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Abstract
We study the universal quantum NOT machine (approximate) when the
quantum state lies between two latitudes on the Bloch sphere and present
an analytical formula for the optimized 1-to-M quantum NOT gate. Our result
generalizes previous results concerning a quantum NOT gate for a quantum
state distributed uniformly on the whole Bloch sphere as well as for the phase-
covariant quantum state. We have also shown that such a 1-to-M optimized
NOT gate can be implemented using a sequential generation scheme via matrix
product states.

PACS number: 03.67.Lx

1. Introduction

Recent developments in quantum information have resulted in an increasing number
of applications, for instance quantum teleportation, quantum dense coding, quantum
cryptography, quantum logic gates, quantum algorithms, etc [1–5]. Many tasks in quantum
information processing (QIP) possess different properties from their classical counterparts.
One such case is the quantum NOT gate. Classically, we can use the NOT gate to invert
(complement) a bit, by changing the value of a bit from 0 to 1, and vice versa. Complementing
a qubit, however, is another matter. The complement of a state |ψ〉 is the state |ψ⊥〉 that
is orthogonal to it. In the quantum case, as shown in [6, 7], it is impossible to build a
device that transforms an unknown quantum state into the state orthogonal to it. That is to
say, we cannot design a perfect universal-NOT (U-NOT) gate. This is another difference
between classical and quantum information processing, which is closely related to the no-
cloning theorem [8]. However, such no-go theorems do not forbid imperfect quantum cloning
[9–28]. Also, approximate quantum NOT gates do exist [6, 7] and it is interesting to know
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how well we can orthogonalize an unknown quantum state. Gisin and Popescu [6] present
the so-called universal quantum spin-flip (UQSF) machine in their analysis of encoding of
quantum information into pairs of spins. One important application of spin flips is the two-
qubit concurrence entanglement measure [29]. In another paper, Bužek et al [7] introduced a
U-NOT gate that makes approximate NOT operation to an unknown quantum state |ψ〉 on the
Bloch sphere and generates an output that is as close as possible to |ψ⊥〉, which is orthogonal
to |ψ〉. The spin-flip operator in [6] is in fact equivalent to the one-input qubit realization of
the U-NOT gate [7].

In many real applications of the quantum information system, we often have partial
information about a two-level quantum state, i.e. the state is distributed on a specific area on
the Bloch sphere. Such partial information as in a phase-covariant 1-to-1 NOT gate allows us to
orthogonalize such states by transforming |0〉 to |1〉 and |1〉 to −|0〉. Thus, any phase-covariant
states can be orthogonalized perfectly. In this work, we study the problem of a 1-to-M quantum
NOT gate where the input state is uniformly distributed between two latitudes of the Bloch
sphere rather than the whole Bloch sphere. By considering the case in which the two latitudes
are brought to the poles, we obtain the U-NOT gate with the optimal fidelity F = 2/3 [7].
However, if the two latitudes collapse into a geodesic circle of the Bloch sphere, we obtain
the phase-covariant NOT gate. As previously stated, the phase-covariant 1-to-1 NOT gate can
be constructed perfectly. So we can achieve the 1-to-M optimal phase-covariant NOT gate
by combining the 1-to-1 perfect NOT gate and the 1-to-M optimal phase-covariant quantum
cloning machine (PQCM). Then the fidelity of the 1-to-M optimal phase-covariant NOT gate
and the fidelity of PQCM must be the same. A blow-by-blow description of this result will be
presented in the following section.

Taking qubit |ψ〉 = cos θ
2 |0〉 + sin θ

2 eiφ|1〉 with φ ∈ [0, 2π ] and θ1 � θ � θ2 as an input,
the outputs of our 1-to-M NOT gate will always be some multipartite entangled states. As
a result, the controllable generation of these entangled states becomes very important. But
in general, it is extremely difficult to generate experimentally multipartite entangled states
through a single global unitary operation. For this purpose, the sequential generation of the
entangled states appears to be a promising avenue [30], where at each step one qubit is allowed
to interact with an ancilla; a lot of effort has been made in recent years [30–36]. The essence
of this sequential scheme is the successive interaction of each qubit initialized in the standard
state with an ancilla of a suitable dimension to generate the desired multiqubit state. It is
pointed out that photonic multiqubit states can be generated by letting a source emit photonic
qubits in a sequential manner [31]. The general sequential generation of entangled multiqubit
states in the realm of cavity QED was systematically studied in [30, 32]. It is also shown that
the class of sequentially generated states is identical to the matrix-product state (MPS), which
is very useful in the study of spin chains of condensed matter physics [33]. Moreover, it is
indicated that the 1-to-M sequential quantum cloning is available [34]. Dang and Fan [36]
extend the sequential quantum cloning to the general N-to-M case, and the d-level quantum
states’ sequential cloning is also presented.

To this end, we consider the following state:

|ψ〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉, (1)

where φ ∈ [0, 2π ] and θ1 � θ � θ2 with constants θ1, θ2. The states we considered here are
distributed uniformly between two latitudes on the Bloch sphere. When θ1 = 0 and θ2 = π ,
we get the situation of the U-NOT gate. In this way, the result of the U-NOT gate is recovered
as special cases of our NOT gate. When θ1 = π/2 and θ2 = π/2, we obtain the NOT gate for
phase-covariant states.
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This paper is arranged as follows. We formulate our problem and present analytical results
to our situation in the following section. In section 3, we analyze the 1-to-M NOT gate within
a sequential generation scheme and express the sequential NOT gate in an explicit form. We
end the paper with some concluding remarks.

2. Quantum NOT gate for qubits between two latitudes on the Bloch sphere

The state we wish to orthogonalize can be written as

|ψ〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉, (2)

where φ ∈ [0, 2π ] and θ1 � θ � θ2, i.e. the states we considered here are distributed
uniformly within a region enclosed by two latitudes on the Bloch sphere. We assume the
following unitary transformation for our NOT gate:

U : |0〉|X〉 →
M∑

k=0

|(M − k)0, k1〉 ⊗ |Ak〉

|1〉|X〉 →
M∑

k=0

|k0, (M − k)1〉 ⊗ |AM+k+1〉,
(3)

where |(M − k)0, k1〉 denotes symmetric and normalized states with M − k qubits in |0〉
and k qubits in |1〉. This ensures a symmetric NOT gate and that all the first M qubits at the
output of the NOT gate are the same. |Al〉(l = 0, 1, . . . , 2M + 1) are unnormalized states. Let
ak,l = 〈Al|Ak〉 and denote ak = 〈Ak|Ak〉 for short where ak,l are the parameters that we want
to determine.

After applying the unitary operation U, we can get the following state with the input qubit
|ψ〉 described by equation (2):

|ψout〉 = cos
θ

2

M∑
k=0

|(M − k)0, k1〉 ⊗ |Ak〉 + sin
θ

2
eiφ

M∑
k=0

|k0, (M − k)1〉 ⊗ |AM+k+1〉. (4)

By taking partial trace, we obtain the reduced density matrix ρm for the mth output qubit, and
all the reduced density matrix are the same for m = 1, 2, . . . ,M:

ρm = tr−m(|ψout〉〈ψout|)

= cos2 θ

2

[
M−1∑
k=0

M − k

M
ak|0〉〈0| + B0|0〉〈1| + B1|1〉〈0| +

M−1∑
k=0

k + 1

M
ak+1|1〉〈1|

]

+ e−iφ sin
θ

2
cos

θ

2

[
B2|0〉〈0| + B3|1〉〈0| + B4|1〉〈1|

+
M−1∑
k=0

√
(k + 1)(M − k)

M
aM−k−1,M+k+1|0〉〈1|

]

+ eiφ sin
θ

2
cos

θ

2

[
B5|0〉〈0| + B6|0〉〈1| + B7|1〉〈1|

+
M−1∑
k=0

√
(k + 1)(M − k)

M
aM+k+1,M−k−1|1〉〈0|

]

3
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+ sin2 θ

2

[
M−1∑
k=0

k + 1

M
aM+k+2|0〉〈0| + B8|0〉〈1| + B9|1〉〈0| +

M − k

M
aM+k+1|1〉〈1|

]
, (5)

where tr−m means tracing out all the output qubits and the ancillary state except for the mth
(m = 1, 2, . . . , M) qubit; Bj(j = 0, 1, . . . , 9) are functions of ak,l and will disappear when
we calculate the average of fidelity as discussed below.

With the reduced density matrix ρm, we can calculate the fidelity

F = 〈ψ⊥|ρm|ψ⊥〉

= sin2 θ

2
cos2 θ

2

[
M−1∑
k=0

M − k

M
(ak + aM+k+1) + 2

M−1∑
k=0

√
(M − k)(K + 1)

M

√
|aM+k+1,M−k−1|2

]

+ sin4 θ

2

M−1∑
k=0

(
M−1

M−k−1

)
(

M

k+1

) aM+k+2 + cos4 θ

2

M−1∑
k=0

(
M−1

k

)
(

M

k+1

) ak+1

+ eiφC1 + e−iφC∗
1 + e2iφC2 + e−2iφC∗

2 , (6)

where C∗
1 is the complex conjugation of C1 and the same for C∗

2 . Since the input state |ψ〉
given by equation (2) is arbitrary, the parameters φ ∈ [0, 2π ] and θ ∈ [θ1, θ2] are unknown
and are distributed uniformly on a belt of the Bloch sphere. We need to average the fidelity
over all possible cases. The last four terms in equation (6) disappear as a consequence of the
averaging over all possible angles φ. Moreover, we obtain the same optimal NOT gate by
assuming that C1 and C2 are equal to zero. On the other hand, by using the definitions of ak,l

we can easily get that ak,l = a∗
l,k, |ak,l|2 = ak,l ∗ al,k � akal . Equality is obtained if and only

if ak,l = al,k are real numbers. Using equation (6), the fidelity becomes

F = sin2 θ

2
cos2 θ

2

[
M−1∑
k=0

M − k

M
(ak + aM+k+1) + 2

M−1∑
k=0

√
(M − k)(K + 1)

M

√
aM+k+1aM−k−1

]

+ sin4 θ

2

M−1∑
k=0

(
M−1

M−k−1

)
(

M

k+1

) aM+k+2 + cos4 θ

2

M−1∑
k=0

(
M−1

k

)
(

M

k+1

) ak+1. (7)

Averaging the fidelity over all possible angles θ [10], and observing that
∑M

k=0 ak =∑M
k=0 aM+k+1 = 1, we have

F̄ =
∫ θ2

θ1
F sin θ dθ∫ θ2

θ1
sin θ dθ

= 1

2
+

1

6
K + P

M−1∑
k=0

√
(M − k)(k + 1)

M

√
aM+k+1aM−k−1

− Q

M−1∑
k=0

M − k

M
ak − R

M−1∑
k=0

M − k

M
aM+k+1, (8)

where K = cos2 θ1 + cos θ1 cos θ2 + cos2 θ2, P = 3−K
6 ,Q = K

6 + 1
4 (cos θ1 + cos θ2) , R =

K
6 − 1

4 (cos θ1 + cos θ2) and K,P,Q,R are constants with given θ1 and θ2. In order
to get the optimal quantum NOT gate, we should maximize F̄ with respect to ak(k =
0, 1, . . . ,M − 1,M + 1,M + 2, . . . , 2M).

We now seek a solution of ak with maximum F̄ . It is interesting to note that if the state
lies somewhere on the whole Bloch sphere, θ1 = 0 and θ2 = π , and we have K = 1, P = 1

3
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and Q = R = 1
6 . The optimal fidelity is F̄ = 2

3 with aM+k+1 = aM−k−1(k = 0, 1, . . . , M −1),
recovering the well-known result for the 1-to-M U-NOT gate in [7]. In this case, the fidelity
is constant and the optimal universal NOT gate can be realized via a ‘measurement +
repreparation’ scheme [7]. In the general situation, with states uniformly distributed in a
belt on the Bloch sphere, the fidelity is dependent on the number of output qubits M as shown
below in this paper. So we cannot realize via a ‘measurement + repreparation’ scheme for the
general case.

For the case in which the state is phase covariant, θ1 = θ2 = π
2 , and we have K = 0, P = 1

2

and Q = R = 0. The optimal fidelity is F̄ = 1
2 +

√
M(M+2)

4M
for even M and F̄ = 1

2 + M+1
4M

for
odd M. This fidelity is just equal to the fidelity of the optimal 1-to-M phase-covariant quantum
cloning machine [15, 25, 37]. As mentioned above, the 1-to-1 phase-covariant NOT gate can
be constructed perfectly. So we can achieve the 1-to-M optimal phase-covariant NOT gate
by combining the 1-to-1 perfect NOT gate with the 1-to-M optimal phase-covariant cloning
machine. The fidelities of the 1-to-M optimal phase-covariant NOT gate and QCM must be
the same as analyzed before.

In the general situation, we need to optimize the fidelity in equation (8) under the
restrictions 0 � ak � 1(k = 0, 1, . . . , M − 1,M + 1, . . . , 2M),

∑M−1
k=0 ak � 1 and∑M−1

k=0 aM+k+1 � 1. By considering the smoothness of F̄ , the maximum value should be
achieved at the extremal points or on the boundary. We analyze the optimization problem with
restrictions and get an optimal NOT gate for the following situations.

(1) When
∣∣θ1 − π

2

∣∣ �
∣∣θ2 − π

2

∣∣ and M is odd, we have aM−1
2

= min
((

P
2Q

)2
, 1

)
, aM =

1 − aM−1
2

, a 3M+1
2

= 1, a 3M+1
2 , M−1

2
= aM−1

2 , 3M+1
2

= −√
aM−1

2
and ak,l = 0 otherwise. The

fidelity is F̄ = 1
2 + K

6 + M+1
2M

(
P 2

4Q
−R

)
for aM−1

2
= (

P
2Q

)2
and F̄ = 1

2 + K
6 + M+1

2M
(P −Q−R)

for aM−1
2

= 1.

(2) When
∣∣θ1 − π

2

∣∣ <
∣∣θ2 − π

2

∣∣ and M is odd, we have aM−1
2

= 1, a 3M+1
2

= min
((

P
2R

)2
, 1

)
,

a2M+1 = 1−a 3M+1
2

, a 3M+1
2 , M−1

2
= aM−1

2 , 3M+1
2

= −√
a 3M+1

2
and ak,l = 0 otherwise. The fidelity

is F̄ = 1
2 + K

6 + M+1
2M

(
P 2

4R
− Q

)
for a 3M+1

2
= (

P
2R

)2
and F̄ = 1

2 + K
6 + M+1

2M
(P − Q − R) for

a 3M+1
2

= 1.

(3) When
∣∣θ1 − π

2

∣∣ �
∣∣θ2 − π

2

∣∣ and M is even, we have aM
2

= min
(

P 2(M+2)

4Q2M
, 1

)
, aM =

1 − aM
2
, a 3M

2
= 1, a 3M

2 , M
2

= aM
2 , 3M

2
= −√

aM
2

and ak,l = 0 otherwise. The fidelity is

F̄ = 1
2 + K

6 + M+2
2M

(
P 2

4Q
−R

)
for aM

2
= P 2(M+2)

4Q2M
and F̄ = 1

2 + K
6 +P

√
M
2 (1+ M

2 )

M
−R M+2

2M
− 1

2Q

for aM
2

= 1.

(4) When
∣∣θ1 − π

2

∣∣ <
∣∣θ2 − π

2

∣∣ and M is even, we have aM
2 −1 = 1, a 3M

2 +1 = min
(

P 2(M+2)

4R2M
, 1

)
,

a2M+1 = 1 − a 3M
2 +1, aM

2 −1, 3M
2 +1 = a 3M

2 +1, M
2 −1 = −√

a 3M
2 +1 and ak,l = 0 otherwise. The

fidelity is F̄ = 1
2 + K

6 + M+2
2M

(
P 2

4R
−Q

)
for a 3M

2 +1 = P 2(M+2)

4R2M
and F̄ = 1

2 + K
6 +P

√
M
2 (1+ M

2 )

M
−

QM+2
2M

− 1
2R for a 3M

2 +1 = 1.

The explicit NOT gate transformations have already been presented in equation (3) by letting∣∣A[ M
2 ]

〉 = −√
a[ M

2 ] | ↑〉, |AM〉 =
√

1 − a[ M
2 ] | ↓〉, ∣∣A[ 3M+1

2 ]

〉 = |↑〉 and |Ak〉 = 0 otherwise

for cases 1 and 3, and by letting
∣∣A[ M−1

2 ]

〉 = |↑〉, ∣∣A[ 3M
2 +1]

〉 = −√
a[ 3M

2 +1]| ↑〉, |A2M+1〉 =√
1 − a[ 3M

2 +1] |↓〉 and |Ak〉 = 0 otherwise for cases 2 and 4.
It is interesting to note that the output states of the NOT gate given by equation (3) are

always entangled. As shown by Bužek et al [7], the optimal U-NOT gate can be realized via
a ‘measurement + repreparation’ scheme. Moreover for each measurement result obtained,

5
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the prepared state can be taken to be a product one. In this case, it is an ‘easy’ operation,
and requires no generation of entanglement nor unitary operations but just the measurement
and preparation of product states. Unfortunately, there is no ‘measurement + repreparation’
scheme in the general situation, as the optimal fidelity is dependent on the number of output
qubits M. So the generation of entanglement is unavoidable. As a result, the controlled
generation of these entangled states becomes very important. In the following section, we
consider the generation of these entangled states and present the sequential quantum NOT
gate.

3. The 1-to-M sequential quantum NOT gate

As shown in [30, 34, 36], the sequential generation of a multiqubit state is as follows. Let
HA � C

D andHB � C
2 be the Hilbert spaces characterizing a D-dimensional ancillary system

and a single qubit, respectively. At every step of the sequential generation of a multiqubit
state, a unitary time evolution will be acting on the joint system HA ⊗ HB . Assuming that
each qubit is initially in the state |0〉, we disregard the qubit at the input and write the evolution
in the form of an isometry V : HA → HA ⊗ HB , where V = ∑

i,α,β V i
α,β |α, i〉〈β|, each

V i is a D × D matrix and the isometry condition takes the form
∑1

i=0 [V i]†V i = 1. If we
apply successively n operations of this form to an initial state |ϕI 〉 ∈ HA, we obtain the state
|
〉 = V [n] . . . V [2]V [1]|ϕI 〉. The n-generated qubits are in general entangled. Assuming in
the last step the ancilla decouples from the system, such that |
〉 = |ϕF〉⊗ |ϕ〉, and we are left
with the n-qubit state

|ϕ〉 =
1∑

i1,...,in=0

〈ϕF|V [n]in . . . V [1]i1 |ϕI 〉|in . . . i1〉, (9)

where |ϕF〉 is the final state of the ancilla. The state (9) is a MPS (cf e.g. [38], and references
therein), already comprehensively studied in [30, 32–34, 36, 38–40]. Moreover, it was proven
that any multiqubit MPS can be sequentially generated [30].

The NOT gate given by equation (3) can approximately orthogonalize one input state
to M copies. Next, we show that this general 1-to-M NOT gate can be generated through a
sequential procedure. The basic idea is to show that the final states

∣∣�k
1M

〉
in equation (3) can

be expressed in its MPS form. As presented in [30], any MPS can be sequentially generated.
We shall follow the method as in [34, 36, 39].

Take one output entangled state in case 1 for example. We have

|�0
1M〉 = −√

γ

∣∣∣∣M + 1

2
0,

M − 1

2
1

〉
|0〉 +

√
1 − γ |M1〉|1〉, (10)

where γ = aM−1
2

. By Schmidt decomposition, we first express the quantum state
∣∣�0

1M

〉
as a

bipartite pure state in HA1 ⊗HB1 with two particle sets A1 = {1} and B1 = {2, 3, . . . , M + 1}
respectively: ∣∣�0

1M

〉 = λ
[1]
1 |0〉∣∣ψ [2,...,M+1]

1

〉
+ λ

[1]
2 |1〉∣∣ψ [2,...,M+1]

2

〉
=

∑
α1,i1

�[1]i1
α1

λ[1]
α1

|i1〉
∣∣ψ [2,...,M+1]

α1

〉
, (11)

where λ[1]
α1

are eigenvalues of the first qubit-reduced density operator and we find λ
[1]
1 =

√
γ M+1

2M

and λ
[1]
2 =

√
1 − γ M+1

2M
. Matching indices in equation (11), we have �[1]0

α1
= δα1,1 and

�[1]1
α1

= δα1,2. To correspond with the MPS form in equation (9), we define

V [1]i1
α1

= �[1]i1
α1

λ[1]
α1

. (12)

6
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By successive Schmidt decomposition, the quantum state
∣∣�0

1M

〉
in equation (10) can be

considered as a bipartite pure state in HAn
⊗ HBn

with particle sets An = {1, 2, . . . , n} and
Bn = {n + 1, n + 2, . . . ,M + 1}, where 1 < n � M . We have

∣∣�0
1M

〉 =
n∑

l=0

λ
[n]
l+1|(n − l)0, l1〉∣∣ψ [n+1,...,M+1]

l+1

〉
, (13)

where λ
[n]
l+1 are eigenvalues of the first n qubits-reduced density operator of |�0

1M〉. We can
obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
[n]
l+1 =

√√√√γ
(

n

l
)

(
M−n

M−1
2 −l

)
(

M
M−1

2

) , 1 < n � M−1
2 , l = 0, 1, . . . , n − 1;

M+1
2 � n � M, l = n − M+1

2 , . . . , M−1
2 .

λ
[n]
n+1 =

√√√√1 − γ + γ

(
M−n

M−1
2 −n

)
(

M
M−1

2

) , 1 < n � M−1
2 . λ

[n]
n+1 = √

1 − γ , M+1
2 � n � M.

λ
[n]
l+1 = 0, otherwise

(14)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣ψ [n+1,...,M+1]
l+1

〉 = −∣∣(M+1
2 − n + l

)
0,

(
M−1

2 − l
)
1
〉|0〉,

1 < n � M−1
2 , l = 0, 1, . . . , n − 1.

∣∣ψ [n+1,...,M+1]
n+1

〉 = −
√

γ

λ
[n]
n+1

√√√√(
M−n

M−1
2 −n

)
(

M
M−1

2

) ∣∣M+1
2 0,

(
M−1

2 − n
)
1
〉|0〉 +

√
1−γ

λ
[n]
n+1

|(M − n)1〉|1〉,

1 < n � M−1
2 .∣∣ψ [n+1,...,M+1]

l+1

〉 = −∣∣(M+1
2 − n + l

)
0, (M−1

2 − l)1
〉|0〉,

M+1
2 � n � M, l = n − M+1

2 , . . . , M−1
2 .∣∣ψ [n+1,...,M+1]

n+1

〉 = |(M − n)1〉|1〉, M+1
2 � n � M.∣∣ψ [n+1,...,M+1]

l+1

〉 = 0, otherwise.

(15)

According to the results in equations (14) and (15), we get the following recursion formula:

∣∣ψ [n,n+1,...,M+1]
l+1

〉 =
√(

n−1
l

)
λ

[n−1]
l+1

⎡
⎣ λ

[n]
l+1√(
n

l

) |0〉∣∣ψ [n+1,...,M+1]
l+1

〉
+

λ
[n]
l+2√(
n

l+1

) |1〉∣∣ψ [n+1,...,M+1]
l+2

〉⎤⎦ . (16)

Comparing equation (16) with the following relation:∣∣ψ [n,n+1,...,M+1]
l+1

〉 =
∑
αn,in

�
[n]in
(l+1)αn

λ[n]
αn

|in〉
∣∣ψ [n+1,...,M+1]

αn

〉
,

we have

�
[n]0
(l+1)αn

= δ(l+1)αn

√(
n−1

l

)
λ

[n−1]
l+1

√(
n

l

) , (17)
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�
[n]1
(l+1)αn

= δ(l+2)αn

√(
n−1

l

)
λ

[n−1]
l+1

√(
n

l+1

) . (18)

In order to get the MPS form in equation (9), we define that

V [n]in
αnαn−1

= �[n]in
αn−1αn

λ[n]
αn

(1 < n � M). (19)

After performing M sequential Schmidt decompositions, the states on the rhs in
equation (13) can be written as

∣∣ψ [M+1]
M+1

2

〉 = −|0〉 and
∣∣ψ [M+1]

M+1

〉 = |1〉. Checking the above-

defined V , we find that the isometry condition
∑

in
[V [n]in]†V [n]in = 1 is satisfied.

Until now, we have found that the output state of the general quantum NOT gate can be
expressed as a MPS as in form (9). So the sequential quantum NOT gate is obtainable.

4. Concluding remark

In summary, by applying quantum orthogonalizing transformations for the state uniformly
distributed between two latitudes on the Bloch sphere, we present a general 1-to-M quantum
NOT gate. The usual U-NOT gate is a special case and we find out that the optimal fidelity
of the U-NOT gate is consistent with that studied in [7]. For another special case, we point
out the relation between the phase-covariant 1-to-M NOT gate and the phase-covariant QCM.
In the general situation, there is no ‘measurement + repreparation’ scheme as the U-NOT gate
can be realized via it. Consequently, the generation of entanglement is unavoidable and the
controlled generation of entangled states becomes very important. To this end, we analyze the
NOT gate within a sequential generation scheme and show that the sequential quantum NOT
gate is feasible.
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